イチゴに対する
ロングSの施肥改善効果について

香川県農業試験場 三木分場
主任技師 近藤 弘志

1. 促成イチゴの栽培体系の驚異的変化

促成栽培型のイチゴは昭和60年代に至って驚異的で、その品種が新しく、ニュートワールドや「アイスアップ」などの品種が発見され、市場に供給されるようになりました。これらの品種は外観、食味、持続性など、果実の品質が優れていることと同時に、それまでの早生品種よりもさらに花芽分化期が早く、価格の高い年内に多くの収量を得ることができ、農業上に有利となることが評価されたものである。

品種が変わると同時に、両品種の特性を生かしてさらに収穫期を短縮する技術が開発され、効率よく収穫できる栽培方法が考えられる。その中で、ポット（鉢）育苗をはじめ、低温暗黑処理、夜間処理などが求められる。これらはすでに各地で広く普及しており、品質の高い果実を11月上旬から出荷することが容易に行われるようになった。

一方、こうした急激な変化が生産現場にもたらした問題点も数多い。これからの病害虫の多発や果実の着色不良といった、主に品種の性質に由来するものと、育苗期間の長期化や定植後の活動不良などといった、主に作業や栽培法の変化によるものに大きく分けられる。もちろん、両者が密接に関係しているとはいうまでもない。

2. 変化をもたらした施肥管理上の問題点

施肥管理の点でも、定植期が早まったことによる影響が見られる。イチゴの促成栽培では、定植から収穫打ち切りまでの期間が7〜8か月にも及ぶため、マルチングや着果位置の関係で追肥がやりにくく、NKロングなどの効果肥料による基肥主体の施肥管理が行われる場合が多い。

ところが、香川県における「女峰」の栽培パターンを例にとって定植時期を比較すると、最も早
表 1 香川県における促成イチゴの栽培パターン（本条のみ、品種「女峰」）

<table>
<thead>
<tr>
<th>育苗方法</th>
<th>8月</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>夜冷育苗</td>
<td>○</td>
</tr>
<tr>
<td>ポット育苗</td>
<td>○</td>
</tr>
<tr>
<td>地床育苗</td>
<td>○</td>
</tr>
<tr>
<td>従来 (宝交早生・地床育苗)</td>
<td>○</td>
</tr>
</tbody>
</table>

○ : 定植、 □□ : 収穫

このため、基肥がより高温時に施用されることになる。たいていの肥料は高温ほど溶出が盛んになるため、定植直後に肥効が高まることが多い。しかしイチゴの場合、ハウスものといった定植から1か月ほどはビニールがかかっており、雨が降ったときには、肥料の溶出が考えられるから。

これでは、長期間育くという緩効性肥料の役目を果たさないばかりか、窒素過多により茎葉が繁りすぎたり、被花房の花芽分化が遅れる原因となる。また被花房によくみられる不授精果や変形果などは、第一の原因は温度であるが、花芽が生長する時期の温度が多見も、どうやら関係しているようである。

こうした問題点をふまえて、施用直後、あるいは高温時の過剰な溶出を抑えた肥料が現場で求められている。

3. N K ロング S の施肥改善効果確認試験

このたび当園において、こういった条件を満たす肥料のひとつとして「N K ロング 203−Sタイプ」を選ば、香川県の主力品種である「女峰」の夜冷育苗促成栽培に対する効果について、調査を行った。この肥料は、施用後30日間の肥効を抑えた肥料のことであり、従来の施肥における問題点の改善が期待できる。今回はあまり詳しい調査はできなかったが、現場でいくらかの参考になるのではと思い、結果を簡単にお知らせする。

（1）試験方法

試験は2か年にかけて行い、1989年秋定植分には「N K ロング S−160 日タイプ*」を、1990年秋定植分には同じく「140日タイプ」を用いた。

試験区の構成は表一に示し、Sタイプを従来の「N K ロング−140日タイプ」に置き換えた区と、さらに「K －配合肥料」の一部を置き換えた「増施（100kg）区」を設けた。標準区は県野菜栽培指針に基づき、肥料の施用量を定めた。

表 2 試験区の構成と施肥量（10a 当り kg）

<table>
<thead>
<tr>
<th>肥料・資材名（N：P₂O₅：K₂O）</th>
<th>①</th>
<th>②</th>
<th>③</th>
</tr>
</thead>
<tbody>
<tr>
<td>N K ロング S</td>
<td>(20：0：13)</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>N K ロング</td>
<td>(20：0：13)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>いちご配合</td>
<td>(5：5：5)</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>苦土重焼椛</td>
<td>(0：35：0)</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>粒状サニライト</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>キポPXスーパー</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

注 ①N K ロング S−160および140日タイプ、80kg / 10a 区
②同、100kg / 10a 区
③標準区

N K ロングの施用時期：160日タイプ 1989年9月11日、140日タイプ 1990年9月12日
施肥方法：全層施用、成分量（N：P₂O₅：K₂O）：①および②24.0：25.5：18.4．
(2) 24.0：25.0：17.0．
①N K ロング S−160および140日タイプ、80kg / 10a 区
②同、100kg / 10a 区
③標準区

試験の施用時期：160日タイプ 1989年9月11日、140日タイプ 1990年9月12日
施肥方法：全層施用、成分量（N：P₂O₅：K₂O）：①および②24.0：25.5：18.4．
(2) 24.0：25.0：17.0．

*（編集後注）本文は1989年試験用として作成したもの。実地は140タイプと180タイプがある。
表3 耕種概要

<table>
<thead>
<tr>
<th>項目</th>
<th>160日タイプ</th>
<th>140日タイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>夜冷処理時期</td>
<td>8月9日～9月5日</td>
<td>8月28日～9月20日</td>
</tr>
<tr>
<td>処理温度</td>
<td>夜温12℃</td>
<td>夜温13℃</td>
</tr>
<tr>
<td>処理時刻</td>
<td>16:00～8:00</td>
<td>16:00～8:00</td>
</tr>
<tr>
<td>定植時期</td>
<td>9月18日</td>
<td>9月25日</td>
</tr>
<tr>
<td>栽植方法</td>
<td>矮輪110cm</td>
<td>矮輪110cm</td>
</tr>
<tr>
<td></td>
<td>株間18cm、2条植え</td>
<td>株間20cm、2条</td>
</tr>
</tbody>
</table>

注160日タイプは1989年、140日タイプは1990年

表4 本ほにおける生育（160日タイプ）

<table>
<thead>
<tr>
<th>区名</th>
<th>11月13日</th>
<th>12月12日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>葉数</td>
<td>葉幅長</td>
</tr>
<tr>
<td>S-160タイプ</td>
<td>80kg</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>100kg</td>
<td>7.2</td>
</tr>
<tr>
<td>標準</td>
<td>7.3</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>1月20日</td>
<td>3月30日</td>
</tr>
<tr>
<td></td>
<td>葉数</td>
<td>葉幅長</td>
</tr>
<tr>
<td>S-160タイプ</td>
<td>80kg</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>100kg</td>
<td>11.7</td>
</tr>
<tr>
<td>標準</td>
<td>12.2</td>
<td>11.3</td>
</tr>
</tbody>
</table>

注1989～1990年

表5 本ほにおける生育（140日タイプ）

<table>
<thead>
<tr>
<th>区名</th>
<th>12月3日</th>
<th>3月4日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>草丈</td>
<td>葉柄長</td>
</tr>
<tr>
<td>S-140タイプ</td>
<td>80kg</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>100kg</td>
<td>16.9</td>
</tr>
<tr>
<td>標準</td>
<td>17.0</td>
<td>11.5</td>
</tr>
</tbody>
</table>

注1990～1991年

肥方法は全量全層施肥とした。
品種は「女峰」を用いた。「女峰」は現在香川県で栽培されているイチゴの約6割を占めている。
作型は夜冷処理促成栽培で、160日タイプは8月前半、140日タイプは8月後半、その夜冷処理を開始するパターンとした。耕種概要についても、表3に示したとおりである。

(2)結果の概要
①生育について
栽培期間中、何度か地上部の生育調査を行ったが、その結果の主なものを見ると、以下に示した。
育苗にロックウールプランテーションを用いたこと、定植が遅れてやや老化苗となったために生育が悪く、初期生育はどの区とも満足がなかった。初期には標準区の生育が盛んとなることが予想されたのであるが、このような理由からか、区間差はあまり認められなかった。
収穫が進むと、いわゆる「成り皮と」低温による生育が落ち着くが、この現象は冬作も同様で標準区で最も目立った。一方Sタイプ、中でもS-160日タイプは春先に生育がいち早く回復し、旺盛となる傾向が見られた。このことから、溶出が遅れて進むSタイプの特徴が、生育に影響を与えられたことがうかがえる。
②収量について
階級別、月別の可販物重量、および月別平均1果重について調べた結果を図1～6に示した。
調査はS-160日タイプについては4月30日まで、S-140日タイプについては4月末まで行った。
活着、初期生育がよかったため、収穫開始
も予定より遅くなった。収穫開始時期は9月18日定植分（S－160日タイプ）は11月中下旬、9月25日定植分（S－140日タイプ）は12月初旬で、区間差は明確には認められなかった。

タイプ別に内容をみてみると、S－160日タイプでは全収量は80kg区、100kg区ともに標準区の109％となり、わずかに増収となった。商品価値の高いM級以上の収量についても、だいたい同じ傾向となった（図－1）。

また月別の収量をみると、低温期、特に1月の収量が、標準区よりも多なくなっていることがわかる（図－2）。この栽培パターンでは1月は腋花房の収穫が始まる時期であり、S－160日タイプの施用が腋花房の分化にプラスに働き、腋花房の発生の前進化となり、大型化となり役立っていると考えられる。

平均1果重については、区によりばらつきがみられたが、トータルではあまり差は現れなかった（図－3）。
一方S－140日タイプについては、全収量は80kg区、100kg区ともに標準区の108％と、やはりわずかに増加した。しかし、M級以上の比率はほとんど差がなかった（図－4）。

月別の収量をみると、100kg区の2、3月の収量が多くなった（図－5）。この作は秋の気温が特に高く、腋花房の発生が遅れる条件がそろっていたが、窒素のうちのSタイプの比率を高めたことと、腋花房の発達や収穫時期の前進化に役立ったとも考えられる。なお平均1果重については、あまり差はみられなかった（図－6）。

以上の結果をまとめると、まずSタイプの施用により、収量の増加が期待できることがわかった。特に腋花房にはプラスに働いていると考えられる。これは、定植直後の窒素過多による腋花房の分化や発達の遅れが抑えられたことによるも
のと思われる。
また、収穫期中盤からの肥え切れによる生育の低下が防げることもわたった。
これは肥効が長続きすることとの現れであり、収穫期間の中間、「女峰」にはことに有利となることが予想される。
今回の試験では、作業上の不備もあって差があまり顕著に現れず、また薬剤の変形度の防止効果も認めることができなかった。
しかし、さらに作業を前進させた場合、高温の時期をより長く続けることによる効果の差が、よりはっきり現れるのではないかと考えられる。
4. 省力化に果たす効果的肥料の役割
促成イチゴに対する、NKロングスタイプのような細効性肥料の重要性はすでに述べたとおりであるが、
このほかにも考慮すべき点がある。それは、省力化の問題である。
イチゴに限らず、野菜類の生産現場では、高齢化や後継者難などによる労力不足が慢性化している。このため生産者はなかなか省力化を図ろうと、模索を繰り返している。
育苗も含めると一作が1か年以上にわたるイチゴ栽培の場合、本作の施肥管理は省力化を図ろうとすればほど重要視されないかもしれない。けれども、9か月間の本作での栽培期間中には、必ず追肥に労力を傾ける必要が出てくる。
イチゴに追肥をやる場合、生産者は果実を汚さないように慎重にマルチをめぐりあげ、畑を崩さないように株間や畑の肩に肥料を入れる。すべてがむか、腰を曲げて行わなければならない。こうした作業は、そう何度もできることではない。
液肥で対応することも多いが、「女峰」はかん水の量をかなり抑えて作るため、あまり多くの養分の供給は期待できない。
このようなことからも、確実に長期間肥効が持続し、しかも初熟の変化過分の心配がいないスタイプのような肥料は、心理的な面も含めて生産者の労働の緩和に役立つものと思われる。
肥料の来た道帰る道

6. 工業化社会の幕あげと鉱物肥料の登場

産業革命は工業化社会の時代の幕をあけた。工
業化社会は鉱物エネルギーに基礎をおいた経済社
会であり、当時の代表的な産業は石炭であった。そ
れまでのヨーロッパの生活は前回にも述べたよう
に土地の生み出す有機物に大きく依存しており、
その生産性をあげるために投入される肥料もまた
土地由来の有機物であった。ところが19世紀にな
ると地下から肥料効果をもった鉱物がもたらされ、
従来の有機物肥料を補完するようになった。すなわちグアノ、カリ鉱石、カリ鉱石としてリン
鉱石の登場である。この意義は大きく、それは19
世紀におけるヨーロッパ人口の急激な増加にあら
われている。

グアノは魚あるいはよかしを意味しており、イ
ンガの公用語であったケチュア語に由来してい
る。赤道近くの無人島に大挙営営するペリカンや
ガラパゴス（海鷹的一种）やカツオドリなどの排泄物
が遺構とともに堆積化したもので、リン酸分
と窒素分を含んでおり、インカの時代から肥料と
して利用されてきた。グアノがヨーロッパへ伝わ
ったのは19世紀はじめであるが、そのきっかけは
アンボルト（Alexander von Humboldt）らが1799
年から1804年にかけて行なった赤道アメリカの探
検であった。アンボルトは1802年ペルーの首都リ
マの近くで、グアノの肥料価値について調査し、
少量をドイツに持ち帰って試験をしている。こうして1810年ごろからペルーのグアノはヨーロッパ
へ輸出されるようになった。

ペルーのグアノをヨーロッパに紹介したのはフ
ンボルトであるが、このグアノをもっとしたもの
はアンボルト海流であった。ペルーの沖合には南
極から北上した寒流（フンボルト海流）が通っ
ているが、そのためにブランクトンが非常に豊富で
ある。これ求めて魚が集まり、とくにアンチョ
ビ（カタクチイシ）の豊かな漁場になっている
る。そしてこのアンチョビを求めて海島類が群集
するためにグアノの堆積がおこるのである。つまり
海水中の窒素とリンがまずプランクトンによって
濃縮され、アンチョビ、海鳥という食物連鎖を
経てヨーロッパの農地にもたらされたという次第
である。

南米からヨーロッパにもたらされたいま一つの
肥料鉱物であるチリ硝石は、1809年ナチス・ヘ
ンケ（Thadeus Haenke）によってチリの海岸
山脈とアンデス山脈の間に横たわるアタカマ沙漠
に発見され、1813年ごろスペイン人によって発掘
がはじめられた。この鉱床の成因には諸説がある
が、大きくわけると無機説と有機説になる。無機
成因説は斜面や丘の上にあった溶岩灰と熔岩層に
由来する硝酸塩が、沙漠環境下で露や雪にあう
降雨によって下へ運ばれてきた、層層中に蒸発
沈殿したとするものである。有機成因説は海藻や
グアノに窒素源を供するものである。チリ硝石中
には時として少量のホウ酸塩やヨウ素が含まれて
いるが、これは有機成因説にとまって有利である。

精製されたチリ硝石（NaNO₃）は約16%の窒素
を含んでおり、これは当時の有機物肥料の10倍以
上におよび著な肥効を示し、また火薬の原料と
しても有用であったので、消費は加速度的に増大し
19世紀末には早くもその枯絶が憂慮されるよう
になった。それでもそれは何を述べる空中窒素の工
業的固定を促すことになったのである。

カリ（Kali ドイツ語、英語は potash）は海藻
灰（主成分は K₂CO₃ と Na₂CO₃）を意味するア
ラビア語の qali に由来する。つまりカリの給源
は海辺の近くにあって海藻、内陸では草木といっ
た植物を燃やした灰であった。これは植物がカ
リウムをまわりから選択的に吸収する性質を利用
したものであった。カリは肥料として効果がある
だけでなく、ガラスや石けんの製造、さらには戦
略物質として重要な硝石（KNO₃）をつくるのに必要となったので、大量の植物バイオマスが灰にされて消費されることになった。

19世紀に入り西ヨーロッパではポーリングの技術が進歩したが、これによって地下深部の岩塩層が発見され、採掘されるようになった。その中で最も重要な出来事はドイツ中部の町シュタッスフルトでの岩塩層の発見であった。1856年11月18日の凌晨、256mの深さで塩を含んだ地層に到達し、はじめは「不純な塩」であったがやがて岩塩層についた塩の純度は塩化ナトリウムの含量を評価され、硫酸塩やマグネシウム塩、カリ塩などは不純な塩であると考えられていた。シュタッスフルトの発見は分野の結果、カリ塩と塩化カリウムを多く含んでいることが明らかになった。これにより、このカリ塩層があるがゆき得ることがわかったからである。このことは三重において時時にかかっていた。何故なら当時のロシアとアメリカの森林はもう岩塩が豊富に存在するのを明らかにしていただければある。シュタッスフルトの工場の大半は焼石工場を併設していた。カリ塩の採取ははじめはほとんど焼石製造業者にも含まれていたが、次第に肥料製造業者にも広がっていった。これにより当時の農業化学の発展であったリーととの価値の影響が大であった。

岩塩層にカリ塩の積みがみられる原因はつきのように説明されている。すなわち処理されている地域に水平な砂州によって部分的に外海から遮断されたが、海水がその砂州を越えて燕の表面から蒸発した量しか入ってこない場合は、潮汐で塩の均等にその結果として堆積が進行する。はじめ蒸発するのは石灰であり、食塩濃度が海水の11倍になったところでその上に塩化ナトリウムが蒸発をはじめる。塩化ナトリウムの堆積層は海の下層で塩の役をやすくなるので、上部の母液は砂州を越えて外海へ流出するようになる。そして一時期海水が潮汐に流れ込む一方で母液が外海へ流出する現象がつきあって、ついには粘土になった母液が蒸発を減少させ、水面は低下しなくなり、海水の流入も止まる。砂州が閉じ、残った母液からマグネシウム塩とカリ塩が沈殿する。ほとんどの岩塩層にカリ塩の積みが見られないのは、岩塩から簡易なマグネシウム塩とカリ塩を含む母液が流れてしまったためと考えられる。シュタッスフルトのカリ塩の層はその母液の一部が地に残った場合に相当している。（市場泰男訳 マルソーフ著 塩の世界史 による）

一言メモ

毒薬のたとえ

サリルス湖はカリフォルニアのモハーヴェ沙漠にあり、全塩濃度は34%を超え、液体というよりも固体に近い。湖の名は1873年ごろここにホウ砂の生産をはじめた J.W. Searlesに因んでつけられたものである。その後この湖はボッタシも産出することがわかり（分析の結果塩化ナトリウム13.4％、炭酸ナトリウム4.9％、硫酸ナトリウム6.9％、塩化カリウム4.7％、ホウ砂1.5％、その他を含む）、1893年から1898年までの間にこのボッタシ採集地に指定した。第1次世界大戦によりアメリカもドイツからボッタシを輸入できなくなったからである。ところがこれを肥料として用いたところ、カリ塩の3分の1近くあったホウ砂がトウモロコシなどの作物に大きな被害を与え、これも供給された農業共同組合は農家に多額の損害保険をしたといわれる。1926年ロザリングテスト試験場の Warington 女史が、水耕したソラマメでホウ素の必須性を証明したが、中華を認められなかったのはこの事件も関係している。しかし毒薬は一体であり、ホウ素にかぎらず微量元素多くははじめ毒性元素として知られたのである。
茶樹の栄養生理・栽培特性と施肥（I）

はじめに

茶は茶樹の茎葉を利用する作物であり、かつ嗜好飲料であるため、収穫する茎葉の品質はきわめて重視される。一般に高品質の茶はアミノ酸やカフェインなどの含窒素化合物が多いので、高品質の茶を得ることを期待して窒素を主体としたかなり多量の施肥が行なわれている。

しかし、摘採の早晩、摘採位置、被覆の有無、加工工程などによっても品質はかなり改変されるため、施肥と茶品質の関係には今一つ判然としない面がある。

そこでつぎに、各種養分や、各時期に施用した窒素、土壌中の窒素などの茶樹による吸収状況からみた施肥についてのべる。

（1）季節別、器官別養分吸収状況

いま、四年生茶樹について季節別、器官別の各種養分の吸収比を表1に示した。

表1 四年生茶樹の季節別・器官別養分吸収比

（農水省茶試験促進支場）より作成

<table>
<thead>
<tr>
<th>季節・器官</th>
<th>乾物重</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>月月</td>
<td>4/5</td>
<td>10</td>
<td>20</td>
<td>26</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>6/8</td>
<td>37</td>
<td>40</td>
<td>58</td>
<td>72</td>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>9/12</td>
<td>35</td>
<td>42</td>
<td>53</td>
<td>27</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>1/3</td>
<td>18</td>
<td>-2</td>
<td>-37</td>
<td>-7</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

乾物重では6～12月の増加が大きいが、1～3月でも18％を占めており、冬期の生産量もかなり大きいことを示している。器官別では葉部が最も多いが、茎・根部でもそれぞれほぼ1/3ずつを占めている。

各種養分の吸収比は乾物重にほぼ比例して6～12月に多く、器官別では葉部に70％内外が集中し、前年秋肥以前に吸収された窒素が全体の19％、春肥が18％を占め、窒素が全体の18％を占め、窒素が全体の19％を占める。このことから、樹体内にすでに蓄積され、新芽の伸長とともに転流してくる窒素がかなり多いことを示している。

（2）一番茶新芽窒素の由来

茶樹に対する施肥は施用時期によって秋肥、春肥、夏肥に大別される。いま、一番茶新芽窒素の由来を追跡した結果を図1に示した。

図1 一番茶新芽窒素の由来

（農水省茶試より作成）

一番茶新芽に含まれる窒素は、全体の19％が前年の秋肥、18％が春肥に由来するが、前年秋肥以前に吸収された窒素がかなり多い。このことは、樹体内にすでに蓄積され、新芽の伸長とともに転流してくる窒素がかなり多いことを示している。

（3）施肥窒素の吸収状況と施肥

秋肥は春から夏にかけての摘採によって消粋した樹勢を回復させ、翌年の一番茶発生のための枝条の充実を図るために行うものである。

秋肥窒素の吸収率と器官別割合を図2に示した。
図2 秋肥^{15}Nの吸収率と吸収^{15}Nの器官別割合
（農水省茶試査崎支場）

<table>
<thead>
<tr>
<th>計</th>
<th>全吸収量</th>
<th>吸収率40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>秋肥枝葉</td>
<td>52%</td>
<td>48%</td>
</tr>
<tr>
<td>落葉</td>
<td>二新</td>
<td>新葉以下</td>
</tr>
<tr>
<td>菖</td>
<td>7%</td>
<td>12%</td>
</tr>
</tbody>
</table>

秋肥窒素の吸収率は40％であり，全吸収量の52％は葉部，48％は茎・根部に吸収されている。この茎・根部にかなり多いことは二番茶以降の新芽への寄与が大きいものと推定される。

秋肥は通常9月中旬に行う。翌年一番茶摘採までの期間は長いので，当面の秋芽の充実を図るための速効性肥料と，樹体の維持向上を図るための持続性のある肥料との併用がよい。但し薬剤を伴う台風の襲来の季節でもあるので，肥料の溶脱を回避するため，秋肥を9月上旬と下旬の2回に分施することもある。

（4）春肥窒素の吸収状況と施肥

春肥は一-三番茶の収量・品質を向上させるため，茶樹の萌芽に先立って行われる。

春肥窒素の吸収率と器官別割合を図3に示した。

春肥窒素の吸収率は38％であり，全吸収量の79％が葉部に吸収され，とくに一番茶と成葉への吸収量が多い。このことは一番茶のよくに品質に及ぼす影響が大きく，一方成葉中の窒素は二・三番茶に影響を与えるものと考えられる。

春肥は通常2月中旬〜3月上旬に行う。肥料の種類は速効性肥料を主体として持続性の高い肥料との併用が望ましい。なお，春肥を2回に分け，1回目を早めに，2回目を遅めに施用することも有効であるが，この時期の地温は低いので，あまり早く施用しても効果の発現はおこらない。

（5）夏肥窒素の吸収状況と施肥

夏肥は二・三番茶の収量・品質，とくに後の向上を図るために行うものである。

夏肥窒素の吸収率と器官別割合を図4に示した。

夏肥1（夏肥1回目の吸収率は36.2％であり，全吸収量の71%が葉部に吸収され，二・三番茶にそれぞれ10％，成葉に31%吸収されている。

夏肥2（夏肥2回目の吸収率は43.4％であり，全吸収量の63％が葉部に吸収され，三番茶に14％

図3 春肥窒素の吸収率と吸収Nの器官別割合（農水省茶試査崎支場）

<table>
<thead>
<tr>
<th>計</th>
<th>全吸収量</th>
<th>吸収率38%</th>
</tr>
</thead>
<tbody>
<tr>
<td>一茶</td>
<td>21%</td>
<td>79%</td>
</tr>
<tr>
<td>二茶</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>三茶</td>
<td>6%</td>
<td>21%</td>
</tr>
<tr>
<td>落葉</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>新芽</td>
<td>6%</td>
<td>21%</td>
</tr>
<tr>
<td>成葉</td>
<td>26%</td>
<td>21%</td>
</tr>
<tr>
<td>茎</td>
<td>12%</td>
<td>21%</td>
</tr>
<tr>
<td>根</td>
<td>9%</td>
<td>21%</td>
</tr>
</tbody>
</table>

一茶：一番茶，二茶：二番茶，三茶：三番茶（図4も同じ）

図4 夏肥窒素の吸収率と吸収Nの器官別割合（農水省茶試査崎支場）

<table>
<thead>
<tr>
<th>計</th>
<th>全吸収量</th>
<th>（時 期）（吸収率）</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏肥1</td>
<td>36.2%</td>
<td>71%</td>
</tr>
<tr>
<td>二茶</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>三茶</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>新芽</td>
<td>12%</td>
<td>21%</td>
</tr>
<tr>
<td>古葉</td>
<td>31%</td>
<td>21%</td>
</tr>
<tr>
<td>茎</td>
<td>17%</td>
<td>21%</td>
</tr>
<tr>
<td>根</td>
<td>7%</td>
<td>21%</td>
</tr>
<tr>
<td>落葉</td>
<td>2%</td>
<td>21%</td>
</tr>
<tr>
<td>夏肥2</td>
<td>43.4%</td>
<td>63%</td>
</tr>
<tr>
<td>三茶</td>
<td>14%</td>
<td>21%</td>
</tr>
<tr>
<td>新葉</td>
<td>18%</td>
<td>21%</td>
</tr>
<tr>
<td>古葉</td>
<td>31%</td>
<td>21%</td>
</tr>
<tr>
<td>茎</td>
<td>18%</td>
<td>21%</td>
</tr>
<tr>
<td>根</td>
<td>11%</td>
<td>21%</td>
</tr>
<tr>
<td>花芽</td>
<td>6%</td>
<td>21%</td>
</tr>
<tr>
<td>落葉</td>
<td>2%</td>
<td>21%</td>
</tr>
</tbody>
</table>
古葉に31‰吸収されている。
夏肥1は通常一番茶摘採直後、夏肥2は二番茶
摘採直後に、いずれも速効性肥料を用いる。
但し、この時期は梅雨期を終える雨の多い時期
でもあり肥料の流着が著しいので、できる限り
分施回数を多くすることが望ましい。一方乾燥が
続くと施肥の効果は少ないので、灌水または降雨
を待って施用する。

（6）茶樹による肥料窒素および土壌窒素の季節
別吸収量（表2に示した）

<table>
<thead>
<tr>
<th>供試土壌</th>
<th>期間 (月)</th>
<th>肥 料 窒 素 (mg%)</th>
<th>土壌窒素 (mg%)</th>
<th>合計 (mg%)</th>
<th>土壌窒素の吸収割合 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>多腐植質黒ボク土</td>
<td>6〜8</td>
<td>35.5 (16)*</td>
<td>98.2 (81)*</td>
<td>133.7</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>9〜11</td>
<td>47.5 (21)</td>
<td>17.3 (14)</td>
<td>64.8</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>12〜2</td>
<td>79.8 (35)</td>
<td>6.3 (5)</td>
<td>86.1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3〜5</td>
<td>62.0 (28)</td>
<td>0 (0)</td>
<td>62.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>年間</td>
<td>224.8 (100) (54)</td>
<td>121.8 (100)</td>
<td>346.6</td>
<td>35</td>
</tr>
<tr>
<td>有機物施用</td>
<td>6〜8</td>
<td>35.2 (14)</td>
<td>356.7 (63)</td>
<td>391.9</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>9〜11</td>
<td>65.1 (25)</td>
<td>158.8 (28)</td>
<td>223.9</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>12〜2</td>
<td>65.0 (25)</td>
<td>0 (0)</td>
<td>65.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3〜5</td>
<td>90.7 (35)</td>
<td>53.7 (9)</td>
<td>144.4</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>年間</td>
<td>256.0 (100) (61)</td>
<td>569.2 (100)</td>
<td>825.2</td>
<td>69</td>
</tr>
</tbody>
</table>

* () 内は年間吸収量に対する季節別の吸収割合 (%)

さらに全吸収量に占める土壌窒素の割合は有機
物無施用のときは35％なのでに対し、有機物施用の
ときは69％と著しく高まっている。
このように有機物を施用して土壌窒素の富化を
図ることにより、6〜11月の土壌窒素吸収量を高
めて夏、秋肥を減施しようことを示唆している。

おそらく近年、茶の消費が高級化志向が強く、高品質の
茶ほど有利に取引きされる傾向がある。そこで茶
農家は高品質の茶を期待して、かなりの多量施肥
を行っている。その結果、肥料費は高騰し、茶生
業生産費の約1/4にも及び、茶業経営をかなり圧
迫している。さらに最近では茶園からの肥料の流
出による周辺環境への影響も懸念されている。
そこで茶樹の栄養生理と栽培特性をよく理解
し、ときに窒素の施肥効率を高めることにより、
茶の収量や品質の維持・向上を図りつつ施肥の合
理的な節減を図ることが肝要である。安易に減肥
や節肥では茶の収量や品質の低下を招いて茶価の
低迷をもたらし、茶業経営の向上とは結びつかない
ことを喫緊の課題である。