流入施肥による畜肥施用の省力化

新潟県農業試験場
専門技術員 中野富夫

はじめに

稲作経営にとって今一番大切な課題は、品質・食味の向上とコスト低減である。畜肥施用は適期・適量・均一施用が品質・食味の向上につながる重要な作業で、しかも夏の暑い時期に背負動散で散布するように労働強度も極めて大きく、良食味・低コストという重要課題の解決に、畜肥の省力・均一施用法は欠かせない技術である。特に、大規模経営によって畜肥の適期施用を確保するためにこの技術は重要である。

畜肥の省力・均一施用法は、中間管理作業の利用や基肥→発施用法からも検討されているが、最近、水に溶ける肥料が開発され、水口流入施用法が注目されるようになった。新潟県においてもこれを省力・均一施用法のひとつと位置づけ農薬や農業改良普及センター等で検討している。ここでは、そのなかから、「あさびマイクロポーラス」の試験結果を紹介する。

図 1 E C の分布（平5.新潟農試）

水口

水尻

流入直後

流入1日後

流入2日後

←30 m →

10 cm

2回目流入時

出穂期

0.1~0.2

0.2~0.3

0.3~0.5

0.5~

(ms/cm)

（SPAD値）

1. 「あさびマイクロポーラス」の畜肥流入施用

平成5年に新潟農試が、現地のコシヒカリ栽培の30a圃場で流入施用を実施した結果を要約する次のとおりである。

(1) 流入直後は肥料濃度のむらが大きいが、流入後2～3日ではほぼ均一となる。（図1）

(2) 流入施用後の葉色のむらは少なく、慣行畜肥との差は認められない。（図2）

(3) 成熟期の稈長や倒伏のぼらつきは少ない。（図3, 4）

(4) 収量は慣行畜肥に比べ劣らない。（表1）

(5) 玄米の品質・食味は良質粒歩合や玄米窒素濃度からみて問題はない。（表1）

この結果とN社の粒子状肥料の結果をあわせて「水口流入による畜肥施用技術」としてまと
められ，平成6年度の普及の参考に供する技術として発表された。そこでは流入施肥の方法及び留意点を次のようにまとめている。

① 流入施肥の方法

② 施肥前に水口で1 cm程度のひだたた水とする。（落水状態では濃厚肥料溶液が土壌中に侵入し施肥むらを起こす。）

③ 3 〜 4 時間で5 cm以上の水深にできる流量で灌漑し，1袋を1 〜 2 分で投入する。

④ 投入後水深5 〜 6 cmになるまで灌漑し，その後止水する。

⑤ 流入後最低5日間は落水しない。（肥料が均一になるのに2 〜 3 日かかる。）

（2）流入施肥実施上の留意点

流入境域は次のとおり

ア 園場面積が50 a以下であること。

イ 均平度が± 3 cm以内で漏水や地力すらが

表1 収穫量（平5.新潟県）

<table>
<thead>
<tr>
<th>精米粒重 (kg/10a)</th>
<th>須数 (本/m²)</th>
<th>登熟粒合(%)</th>
<th>千粒重 (g)</th>
<th>良質粒百分率 (%)</th>
<th>玄米N含 (%有率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>513</td>
<td>362</td>
<td>77</td>
<td>21.1</td>
<td>85.6</td>
</tr>
<tr>
<td>2</td>
<td>543</td>
<td>381</td>
<td>77</td>
<td>21.3</td>
<td>86.7</td>
</tr>
<tr>
<td>3</td>
<td>511</td>
<td>364</td>
<td>82</td>
<td>21.3</td>
<td>85.2</td>
</tr>
<tr>
<td>平均</td>
<td>522</td>
<td>369</td>
<td>79</td>
<td>21.2</td>
<td>85.8</td>
</tr>
<tr>
<td>慣行</td>
<td>499</td>
<td>345</td>
<td>84</td>
<td>21.1</td>
<td>86.2</td>
</tr>
</tbody>
</table>

（注）品種：コシヒカリ

表2 普及展示園の条件

<table>
<thead>
<tr>
<th>場所</th>
<th>中央機能</th>
<th>須域</th>
<th>農業大学校</th>
</tr>
</thead>
<tbody>
<tr>
<td>品種</td>
<td>コシヒカリ</td>
<td>新潟県</td>
<td>ゆきの精</td>
</tr>
<tr>
<td>面積</td>
<td>30a</td>
<td>30a</td>
<td>50a</td>
</tr>
<tr>
<td>土壌</td>
<td>SL</td>
<td>LiC</td>
<td>CL</td>
</tr>
<tr>
<td>灌漑時間</td>
<td>7.5h</td>
<td>2.5h</td>
<td>2.7h</td>
</tr>
</tbody>
</table>

試験条件は表2のとおりである。

中央機能農業改良普及センターの展示園用水量が少な目で，灌漑に長時間を要した。しかし，肥料分布のむらは3展示園とも著しい範囲と思われた。つまり，流入2日前後の肥料をEC値で示すと図5のとおりで（摂数値は見やすくするため100倍してある），中野療以外は部分的に濃い所があるが，施肥前と施肥後の色の変化を慣行区と展示区で比べると表3のとおり，展示区の変動係数は慣行区とほぼ同様に減少し，特に生育すらを大きくしているとは思えないからである。

また，施肥前後の草丈と成熟期の稈長を示すと
図 5 流出 2日後の EC（10^{-3} mS/cm）

<table>
<thead>
<tr>
<th>水口</th>
<th>13 12 19</th>
<th>19 18</th>
<th>30 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>水口</td>
<td>13 12 16</td>
<td>18 17</td>
<td>32 14</td>
</tr>
<tr>
<td>中東蒲原</td>
<td>17 16 16</td>
<td>17 18</td>
<td>14 12</td>
</tr>
<tr>
<td>中頭域</td>
<td>农業大学校</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 3 植物の目標（SAPD）

<table>
<thead>
<tr>
<th>場所</th>
<th>中東蒲原</th>
<th>中頭域</th>
<th>大学校</th>
</tr>
</thead>
<tbody>
<tr>
<td>施肥前</td>
<td>7/22</td>
<td>7/4</td>
<td>7/11</td>
</tr>
<tr>
<td>植行</td>
<td>平均</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>CV%</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>展示</td>
<td>平均</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>CV%</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2回目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>施肥時</td>
<td>8/4</td>
<td>7/15</td>
<td>7/22</td>
</tr>
<tr>
<td>植行</td>
<td>平均</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>CV%</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>展示</td>
<td>平均</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>CV%</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

表 4 草丈・草長（cm）

<table>
<thead>
<tr>
<th>場所</th>
<th>中東蒲原</th>
<th>中頭域</th>
<th>大学校</th>
</tr>
</thead>
<tbody>
<tr>
<td>草丈</td>
<td>7/22</td>
<td>7/4</td>
<td>7/11</td>
</tr>
<tr>
<td>植行</td>
<td>平均</td>
<td>93</td>
<td>62</td>
</tr>
<tr>
<td>CV%</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>展示</td>
<td>平均</td>
<td>94</td>
<td>62</td>
</tr>
<tr>
<td>CV%</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>草長</td>
<td>9/12</td>
<td>8/22</td>
<td></td>
</tr>
<tr>
<td>植行</td>
<td>平均</td>
<td>98</td>
<td>69</td>
</tr>
<tr>
<td>CV%</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>展示</td>
<td>平均</td>
<td>98</td>
<td>69</td>
</tr>
<tr>
<td>CV%</td>
<td>0.4</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

表 5 収量及び収量構成要素

<table>
<thead>
<tr>
<th>場所</th>
<th>中東蒲原</th>
<th>中頭域</th>
<th>大学校</th>
</tr>
</thead>
</table>
| 精米米量 | 植行 | 575 | 583 | 479*
| (kg/10a) | 展示 | 606 | 558 | 500*
| 總数 | 植行 | 459 | 475 | 434 |
| (/m²) | 展示 | 481 | 436 | 476 |
| 登校歩合 | 植行 | 91 | 79 | 84 |
| (%) | 展示 | 83 | 83 | 76 |
| 千粒重(g) | 植行 | 20.9 | 20.9 | 22.2 |
| (注)*は実験 |

表 4 のとおりで、植物の場合と同様の傾向とみてよい。収量も表 5 のとおり展示区は植行区とほぼ同等となった。

以上から、「あさひマイクロポラス」は30 a 以下の圃場であれば流出施用が可能であることが明らかとなった。条件がよければ50 a でも可能との結果も得られたが、後で述べるようにまだ改善すべき点がある、現段階での適用は30 a 以下とした。

II 穂肥流入施用技術の今後の課題

平成 6年は、少雨の影響で流出施用の際に用水が不足して苦労したと

ところかかなりあった。流出施用には一定以上の灌水能力が必要なので、通常の気象条件の年でも広面積で施用する場合は、関係者の協議による計画的な実施が必要となる。

穂肥流入施用技術は、経済性等を考慮すると今のような大規模経営向きである。また、この技術が大区画水田に適用できれば、一層のコスト低減が可能となる。今回の農業大学校の展示圃では50 a 規模で検討し、適用可能との判断が得られたが、流入施用前の水位調節が困難であることや、作物成長を促した方がよいなどの問題点が指摘された。その他、水力むら対策などこの技術を大区画水田に適用するにはもう一工夫必要である。

また、農業の環境への負荷が厳しい目で見られおり、灌水により肥料成分が圃場外へ流出する可能性が十分注意することがこの技術の普及にとって重要である。