被覆肥料を用いた施施肥量削減茶園における
収量・荒茶成分の推移

静岡県茶業試験場由紀

1. 試験の背景・ねらい

茶栽培においては窒素肥料が環境へ負荷を与えていることから、施肥量を削減した施肥技術が求められて来ました。一方、長期に渡り施施肥量削減した場合、収量や品質がどのように変化するのか明らかにすることも必要でした。そのため、静岡県茶業試験場では、現地農家の協力のもと、施肥量を削減した場合の収量や品質に対する影響について県の中部、西部地域で継続的な調査を行っています。しかし、本県の中、西部地域の多くの茶園が赤黄色土壌であり、また茶葉試験場のある牧之原台地も同じ土壌であることから、試験データは赤黄色土壌条件下のもとでした。一方、静岡県の富士川以東の茶園は富士山の火山灰に由来する黒ボク土壌であり、赤黄色土壌での施肥量削減の結果がそのまま活用できるのか判然としませんでした。そこで、黒ボク土壌地帯にある当分場では、平成10年から試験開始前平成9年の基準の窒素施用量75kg/10aを基準に、54kgと31kgに施用量を削減した場合の生葉収量や荒茶成分への影響を継続的に調査しました。

2. 試験内容

富士分場の茶園（品種‘やぶきた’19年生）を用いて、1区20m²、2反復で平成10年2月の春肥から処理を開始しました。各区の年間の施施肥体系は表1のとおりです（以下、それぞれの区のNを省略する）。なお、31kg区では春と秋に施用する配合肥料に被覆肥料（エコロン複合S301-70）を重量比で14％加えてあり、年間窒素量の約1/3は被覆肥料由来としました。調査は一番茶、二番茶の生葉収量と枠摘み（30×30cm）における収量構成要素、少量製茶機（1kg機）により製造した荒茶の成分分析及び官能検査、土壌の理化学性調査等を行いました。

<table>
<thead>
<tr>
<th>施肥 時期</th>
<th>肥料名</th>
<th>肥料成分 (%)</th>
<th>窒素量</th>
</tr>
</thead>
<tbody>
<tr>
<td>2月上旬</td>
<td>土壌改良剤</td>
<td>- - -</td>
<td>N31kg区 N54kg区 N75kg区</td>
</tr>
<tr>
<td>2月下旬</td>
<td>茶 配</td>
<td>8 4 5</td>
<td>- - 11.2</td>
</tr>
<tr>
<td>3月上旬</td>
<td>茶 配</td>
<td>8 47 5</td>
<td>6.4 8.0 9.6</td>
</tr>
<tr>
<td>4月上旬</td>
<td>ボーラス</td>
<td>16 16 10</td>
<td>- 9.6 9.6</td>
</tr>
<tr>
<td>5月下旬</td>
<td>有機化成</td>
<td>9 2 4</td>
<td>5.4 7.2 5.4</td>
</tr>
<tr>
<td>6月中旬</td>
<td>有機化成</td>
<td>9 2 4</td>
<td>- 7.2 5.4</td>
</tr>
<tr>
<td>7月中旬</td>
<td>有機化成</td>
<td>9 2 4</td>
<td>- 7.2 5.4</td>
</tr>
<tr>
<td>8月上旬</td>
<td>土壌改良剤</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>8月中旬</td>
<td>堆 肥</td>
<td>0.6 0.8 0.9</td>
<td>3.0 3.0 3.0</td>
</tr>
<tr>
<td>8月下旬</td>
<td>茶 配</td>
<td>8 4 5</td>
<td>8.0 9.6 12.0</td>
</tr>
<tr>
<td>9月下旬</td>
<td>茶 配</td>
<td>8 4 5</td>
<td>8.0 9.6 12.0</td>
</tr>
</tbody>
</table>

（年間窒素施用量（kg/10a）） 30.8 54.2 73.6

注）N31kg区の茶配は肥料成分8-4-6で、エコロン複合S301-70が重量比で14％含まれている

3. 調査結果

（1）生葉収量

試験開始3年目となる平成12年からの一番茶及び二番茶の各区収量の平均値の推移を表2に示しました。一番茶では、年により収量に差は見られますが、統計的には区間に差は見られず、いずれの年も31kg区、54kg区とも対照の75kg区と変わらない結果でした。31kg区では窒素削減が大きいにもかかわらず、平成17年を除けばいずれの年も
75kg区を上回るような収量でしかが、この要因の1つは被覆肥料を用いたためとも考えられます。また、二番茶も一番茶同様3つの区の間に統計的差はありませんでした。ただし、一番茶では31kg区、54kg区とも6年間の平均値が75kg区をやや上回るような値でした。二番茶では5年間の平均値が75kg区をやや下回るような値となってしまいました。この要因としては中切り更新した翌年（平成16年）の収量が75kg区に比べて少なかったことが影響しているように思われました。

（2）枠摘み調査
一番茶の枠摘み調査結果を表3に示しましたが、新芽数（芽の数）、百芽重（芽当たりの重量）、出開度（芽の生育程度）とも収量同様、区間に統計的差はありませんでした。また31kg区はいずれの調査項目も、6年間の平均値は75kg区をやや上回る数値となっています。
一方、二番茶の枠摘み調査結果も、一番茶同様いずれの年も区間に統計的差は見られませんでしたが、新芽数、百芽重の6年間の平均値は、31kg区、54kg区とも75kg区に比べて低い値となっております（表4）。新芽数は平成12年と中切り更新した翌年（平成16年）の減少が、百芽重は平成16年の減少が影響を与えているように考えられます。

<table>
<thead>
<tr>
<th>調査項目</th>
<th>試験区</th>
<th>平成12年</th>
<th>平成13年</th>
<th>平成14年</th>
<th>平成15年</th>
<th>平成16年</th>
<th>平成17年</th>
<th>17年平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>新芽数（本）</td>
<td>N31kg区</td>
<td>138</td>
<td>108</td>
<td>92</td>
<td>146</td>
<td>100</td>
<td>121</td>
<td>118 (103)</td>
</tr>
<tr>
<td></td>
<td>N54kg区</td>
<td>135</td>
<td>109</td>
<td>92</td>
<td>130</td>
<td>97</td>
<td>109</td>
<td>112 (98)</td>
</tr>
<tr>
<td></td>
<td>N75kg区</td>
<td>129</td>
<td>97</td>
<td>98</td>
<td>142</td>
<td>101</td>
<td>117</td>
<td>114 (100)</td>
</tr>
<tr>
<td>百芽重（g）</td>
<td>N31kg区</td>
<td>46.5</td>
<td>40.8</td>
<td>52.7</td>
<td>48.7</td>
<td>82.2</td>
<td>48.9</td>
<td>53.3 (105)</td>
</tr>
<tr>
<td></td>
<td>N54kg区</td>
<td>48.4</td>
<td>36.6</td>
<td>53.9</td>
<td>49.5</td>
<td>77.1</td>
<td>47.6</td>
<td>52.2 (103)</td>
</tr>
<tr>
<td></td>
<td>N75kg区</td>
<td>46.7</td>
<td>35.1</td>
<td>50.0</td>
<td>47.3</td>
<td>76.5</td>
<td>49.7</td>
<td>50.9 (100)</td>
</tr>
<tr>
<td>出開度（％）</td>
<td>N31kg区</td>
<td>64</td>
<td>45</td>
<td>44</td>
<td>45</td>
<td>53</td>
<td>74</td>
<td>54 (107)</td>
</tr>
<tr>
<td></td>
<td>N54kg区</td>
<td>64</td>
<td>41</td>
<td>45</td>
<td>43</td>
<td>51</td>
<td>79</td>
<td>54 (106)</td>
</tr>
<tr>
<td></td>
<td>N75kg区</td>
<td>61</td>
<td>30</td>
<td>46</td>
<td>43</td>
<td>49</td>
<td>75</td>
<td>51 (100)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査項目</th>
<th>試験区</th>
<th>平成12年</th>
<th>平成13年</th>
<th>平成14年</th>
<th>平成15年</th>
<th>平成16年</th>
<th>平成17年</th>
<th>17年平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>新芽数（本）</td>
<td>N31kg区</td>
<td>90</td>
<td>118</td>
<td>79</td>
<td>93</td>
<td>114</td>
<td>99 (91)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N54kg区</td>
<td>96</td>
<td>111</td>
<td>81</td>
<td>87</td>
<td>105</td>
<td>96 (89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N75kg区</td>
<td>128</td>
<td>112</td>
<td>89</td>
<td>102</td>
<td>111</td>
<td>108 (100)</td>
<td></td>
</tr>
<tr>
<td>百芽重（g）</td>
<td>N31kg区</td>
<td>52.4</td>
<td>60.4</td>
<td>40.1</td>
<td>70.8</td>
<td>58.6</td>
<td>56.5 (105)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N54kg区</td>
<td>51.8</td>
<td>67.1</td>
<td>33.6</td>
<td>69.9</td>
<td>62.6</td>
<td>57.0 (103)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N75kg区</td>
<td>52.7</td>
<td>64.3</td>
<td>40.3</td>
<td>79.8</td>
<td>60.8</td>
<td>59.6 (100)</td>
<td></td>
</tr>
<tr>
<td>出開度（％）</td>
<td>N31kg区</td>
<td>76</td>
<td>91</td>
<td>36</td>
<td>94</td>
<td>97</td>
<td>79 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N54kg区</td>
<td>72</td>
<td>91</td>
<td>36</td>
<td>92</td>
<td>96</td>
<td>77 (98)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N75kg区</td>
<td>71</td>
<td>92</td>
<td>37</td>
<td>97</td>
<td>97</td>
<td>79 (100)</td>
<td></td>
</tr>
</tbody>
</table>
（3）荒茶成分
近赤外分光分析法による荒茶成分の全窒素、遊離アミノ酸、粗繊維の含有率はいずれの年も、区間に統計的差が認められませんでした。しかし、全窒素、遊離アミノ酸では平成15年から31kg区、54kg区とも75kg区に比べてわずかに低い傾向が見られました（表5）。一方、粗繊維は処理開始当初はわずかに多い傾向が伺えましたが、7、8年目はほぼ同量になってきたように思われます。また二番茶でも5年間の平均値は一番茶同様の傾向が伺えます（表6）。

（4）官能検査
平成15～17年の一番茶荒茶の官能検査では、平成15、16年は75kg区の点数が他の2区より優れる傾向にありましたが、平成17年は逆の結果となりました（表7）。官能検査では製造によるサンプル間の誤差が出やすく、区間の差は判然としないと思われました。

（5）土壌の理化学性
処理後7年経過した平成16、17年の土壌分析（表8）の結果をみてみると、31kg区では、pHは他区に比べて高く、またEC値は低くなっています。一方、54kg区は75kg区と変わりませんでした。土壌改良剤の処理量が同じ31kg区と54kg区では石灰と苦土の値に差が見られ、54kg区では両成分が窒素とともに流らしていくために値が小さくなっていることが推察されます。カリは年により数値が異なるものの、区間に大きな差はありませんが、有効態リン酸は施肥量が多い区の方が値が高く土壌に蓄積していることがわかります。

<table>
<thead>
<tr>
<th>表5．一番茶荒茶の近赤外分析結果の推移</th>
</tr>
</thead>
<tbody>
<tr>
<td>分析項目</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>全窒素 (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>遊離アミノ酸 (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>粗繊維 (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表6．一番茶荒茶の近赤外分析結果の推移</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査項目</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>新しい数 (本)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>百梨重 (g)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>出戸段 (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表7．一番茶荒茶の官能検査結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験区</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>N31kg区</td>
</tr>
<tr>
<td>N54kg区</td>
</tr>
<tr>
<td>N75kg区</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表8．施肥削減7年経過後の土壌分析結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験区</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>N31kg区</td>
</tr>
<tr>
<td>N54kg区</td>
</tr>
<tr>
<td>N75kg区</td>
</tr>
</tbody>
</table>
月別降水量とECセンサー値の推移を図1に示しました。試験場に埋設されたECセンサー値
は施肥量が多い区で数値が高い傾向がみられ
ます。しかし、夏期に降水量の多かった年の秋一冬
期は降雨に差は少なく、ECセンサー値が逆転す
る月も見られます。このことから、施用量が多く
ても降水量が多いと、窒素等の塩基の流亡が多い
ことが推測されます。一方、31kg区や54kg区の
窒素削減区では被覆肥料を配合することにより,
降雨による窒素分の流亡を抑え、一定の肥効を確
保しているものとして考えられます。

図1. 月別降水量とECセンサー値（月平均）の推移

3. まとめ
平成12年から平成17年までの6年間の調査デー
タをみてみると、一番茶収量は窒素の施用量を対
照1/2以下の31kgに削減しても、黒ボク土壌にお
いては変わらないことがわかりました。また検
討調査結果が示しているように、施肥量を削減し
ても収量を構成する要素である新芽数や百芽重,
また出葉度などは変わらないため、収量そのもの
も変わらないと考えられます。一方、二番茶は統
計的には3つの区間に差は見られませんが、削減
区では、処理後5年目位から75kg区に比べ収量が
やや少ない傾向が見られ始めしたように思われる
す。検討調査の結果では、新芽数と百芽重が少
くなり傾向にあったと考えられます。
荒茶では、一番茶、二番茶とも調査したいずれ
の成分も統計的には削減による区間の差は見られ
ません。しかし、75kg区との比較では、削減区の
一番茶で遊離アミノ酸の含有率が6年目で減少しな
かった傾向が同様しました。ただ、官能検査の
点数を比較してみると、必ずしも、全窒素や遊離
アミノ酸含有率が高い方が官能検査の結果が高い
わけではありません。これらのことから考えると,
今回の調査では、施用量の削減により荒茶品質が
低下したと見られません。
施肥量削減の大きな目的
の1つは、肥料成分の流亡
による環境への負荷を少
なくすることです。削減区で
は、pHやCEC値が対照区に
比べ差が見られ、また土壤
改良剤の処理量が少ない
にかかわらず、土壌中の石
灰や苦土の量は対照区に比
べ多くなっています。この
ことは、施肥量を削減する
とともに被覆肥料を用いる
ことにより、環境中へ流亡
する肥料成分が少なくな
り、さらに肥料成分の吸収効率を高めることを示
していると思われます。
今回の調査結果は、被覆肥料を使った継続的な
施肥削減による吸収量や品質に対する影響を現象と
して捉えた試験で、それなりの効果が認められま
したがその要因解析には至っていません。そのた
め、どこでも活用できる技術としないていません。
今後は、茶の肥料成分の吸収メカニズムや生育と
の関係など、既存の情報と施肥技術を組み合わせ
て、多くの場面で活用可能な技術の開発が必要と
考えます。