水稲ポット苗（成苗）に対する被覆肥料
「マイクロロングトータル201-100」の施用効果

北海道立中央農業試験場
水田・転作科

研究員 後藤 英次

1. はじめに
寒冷で生育期間の短い北海道の水稲栽培において、収量・品質を安定化させるために、初期生育向上と生育安定化は重要である。その具体的な技術として、北海道では「苗の成苗化」と「全層施肥と側条施肥の組み合わせ」が推奨されてきた。育苗期間が35日～40日と長い「成苗」は、生育を進め、出穂を早めることで十分な登熟期間を確保できる。根の近傍（苗高3cm、深さ3～5cmの作条）に肥料が高濃度に存在する「側条施肥」は、移植後から速やかに吸収できる。

また近年では、箱マット苗における緩効性肥料の施用効果が全国各所で報告されており、北海道内でも一部で普及段階に入っている。育苗箱施肥は、育苗期間の養分吸収を促進するとともに、移植株内に肥料を有することにより、移植直後の根伸長が不十分な時期から吸収が期待できることから、初期生育向上に有効な技術である。ただし、成苗用苗の場合、通常の緩効性肥料では粒径が大きいため、ポット毎に均一施肥することが困難であった。これに対して、主に園芸作物の育苗に用いられてきた被覆肥料「マイクロロングトータル」は、微粒子（粒径1.0～1.5mm、約350粒/g）のポリオレフィン系樹脂被覆肥料であり、成苗用ポットへの均一施用が期待された。そこで本試験では、「マイクロロングトータル201-100」（溶出はリン型、土壌温度25℃-100日間の窒素溶出率80%）の育苗箱施肥が、水稲苗および移植後の生育、収量に及ぼす影響を検討したので、その結果を以下に記す。

2. 試験の概要
本試験は、北海道中央部に位置する岩見沢市にある、北海道立中央農業試験場岩見沢試験地の水稲育苗畑および水田圃場において実施した。使用された水稲育苗畑の土壌型は灰色低地土、水田圃場は2006～2007がブライ低地土、2008年が泥炭土であり、その化学性を表1に示した。供試品種は「ほしのゆめ」を用い、育苗様式は（株）みのる産業製のポット448育苗箱（448穴）を用いた成苗とした。

試験処理には、①マイクロロング施用量0g/箱（以下ML0区）、②マイクロロング施用量40g/箱（以下ML40区）、③マイクロロング施用量50g/箱（以下ML50区）を設けた。培土には「くみあい成苗培土H」、覆土には「くみあい粒状覆土」を用いた。置床には、育苗化成258を用いて窒素25g/m²相当を全層施肥した。置床設置後、出芽するまでの5～10日程度はシルバーポリ被覆を行い、その後は慣行に準じて育苗管理を行った。

3. 播種作業について
播種作業では、施設装置として（株）みのる産業製の施業装置（施業ロール型着具）を用い、苗箱に設定量のマイクロロングが入るように調整した。施業装置は、播種装置を覆土の間に設置し（写真1）、（培土充填）→（播種）→（マイクロロング施肥）→（覆土）の手順で作業した。

<table>
<thead>
<tr>
<th>表1．供試した育苗圃場の作土分析値</th>
<th>pH</th>
<th>EC</th>
<th>塩素</th>
<th>40℃-1w</th>
<th>40℃-1w</th>
<th>交換性窒素</th>
<th>有効態リン酸</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>須甲</td>
<td>5.3</td>
<td>0.1</td>
<td>5.6</td>
<td>6.9</td>
<td>15.0</td>
<td>49</td>
<td>265</td>
</tr>
<tr>
<td>土壌診断</td>
<td>4.0 以下</td>
<td>5.0 以下</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15以下</td>
</tr>
</tbody>
</table>

（以下ML0区）、②マイクロロング施用量40g/箱（以下ML40区）、③マイクロロング施用量50g/箱（以下ML50区）を設けた。培土には「くみあい成苗培土H」、覆土には「くみあい粒状覆土」を用いた。置床には、育苗化成258を用いて窒素25g/m²相当を全層施肥した。置床設置後、出芽するまでの5～10日程度はシルバーポリ被覆を行い、その後は慣行に準じて育苗管理を行った。

3．播種作業について
播種作業では、施設装置として（株）みのる産業製の施業装置（施業ロール型着具）を用い、苗箱に設定量のマイクロロングが入るように調整した。施業装置は、播種装置を覆土の間に設置し（写真1）、（培土充填）→（播種）→（マイクロロング施肥）→（覆土）の手順で作業した。
写真１．播種およびマイクロロン施肥の風景

したがって、「マイクロロン」は播種された種の頂上に、種と接触するように施肥されることになる（写真２）。播種作業時の計測・観察では、育苗箱内の施肥量は比較的安定しており、箱内における施肥の明らかな偏りも認められなかった。

４．育苗結果について

シルバー被覆を剥いた出芽時の観察では、全体的に出芽のムラ・不良は認められなかったが、各年ともマイクロロン施用の場合に、0.5〜1日程度の出芽の遅れが見られた。その後は各年の天候に応じて苗の生育は進行・遅延するものの、試験処理が生育の進行に及ぼす影響は判然としなかった。ただし、2葉展開の頃からマイクロロン施用区で葉色が濃い印象であった。

育苗終了時の苗質に関しては、苗立ち本数・第一穂高・葉数に有意な差が認められず、目視による明瞭な差異も無かった（写真３）。草丈・分け丈・地上部乾物重は、マイクロロン施用により増加する傾向にあり、この傾向は3年を通じて概ね認められた（表２）。詳細に数値を見ると、全般的に葉数は若干少ないが、これは本試験を行った3年の育苗期間の天候が不順であり、遅延傾向にあった（育苗期間の作況：並〜劣）のためと考えられる。その他の項目（苗立ち本数・草

写真２．育苗箱内のマイクロロン施肥の様子

表２．育苗終了時の苗の形質（2006〜2008年、3年平均）

<table>
<thead>
<tr>
<th>調査項目</th>
<th>3年平均値</th>
<th>比（対照＝100）</th>
<th>生育診断基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>対照区</td>
<td>ML40区</td>
<td>ML50区</td>
</tr>
<tr>
<td>苗立ち本数</td>
<td>本/穴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>草丈</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一穂高</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>薬数</td>
<td>株</td>
<td></td>
<td></td>
</tr>
<tr>
<td>分け丈</td>
<td>株/株</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地上部乾物重</td>
<td>g/100本</td>
<td></td>
<td></td>
</tr>
<tr>
<td>充実度１）</td>
<td>-</td>
<td>0.30</td>
<td>0.31</td>
</tr>
</tbody>
</table>

1）充実度は、（地上部乾物重g/100本）/（草丈cm）から算出
写真3．育苗中の苗の様子

苗の地上部無機成分含有率は、ML50区⇒ML40区⇒対照区の順となり、マイクロロン施用により明らかに増加した（表3）。窒素含有率は2007年と2008年の含有率が低かったために、平均値では栄養診断基準値を満たさなかったが、リン酸とカリウム含有率は基準値以上であった。また、各無機成分吸収量は含有率とほぼ同様の傾向であった。施肥量別の養分吸収については、ML50区でML40区より若干勝るもの、その差は、成分保証される溶出曲線（25℃）から15～20%程度と想定される。

これに対して、本試験の育苗終了時までの肥料窒素残存率を検討した。調査にあたっては、供試肥料が微粒かつポット内施用のため埋設や回収が困難であるので、ボット内の土壤全体を硫酸分解し、これにより得られるアンモニア態窒素の残量（ML施用区－対照区）によって算出した。本肥料はアンモニア態窒素と硝酸態窒素が等量含まれ、
図1．育苗期間のボット内地温（2008年度）

図2．育苗期間における水稲の窒素利用率

写真4．灌水不足と思われる縁苗の葉先枯れの様子

溶出速度は同等と仮定すると，得られたマイクロロンの窒素残存率は，20～25%程度と推定された。これは予想される窒素溶出と比較して同等～若干多い。高温履歴のある場合に高温側に寄った溶出パターンを示す可能性もあるため，今後さらに検討が必要と考えられる。また，苗による窒素吸収量から見た育苗期間の窒素利用率は，ML40区で平均8.3％，ML50区で平均10.2％であった（図2）。水稲育苗では浸水量が多いため，溶出窒素の一部が下層に流し出した可能性がある。以上の結果から，本肥料の育苗期間における窒素溶出や苗による窒素吸収はあまり大きくなく，大半は本田移植後に溶出・利用されたと考える。

ただし，窒素溶出量が少ないといっても，育苗箱内の培土は1.2kg/箱程度，2.6g/穴程度と非常に少ないことから，種子近傍ではECの上昇に伴う生育抑制，具体的には肥料焼けも懸念される。また，2006年の育苗期間において乾燥しやすかった縁苗部分でスポット的にお葉先の枯れが観察された（写真4）。本試験期間では，各年ともマイクロロン施用により0.5～1日程度出芽が遅れている。土壌分析値を見るとpHの低下は小さいものの，ECは明らかに上昇していたことから，EC上昇による出芽遅延の可能性も否定できない（表4）。過去の報告等では1.5～2mS/cm以上での出芽抑制や1.0mS/cm以上の生育抑制が指摘されている。本試験期間では1.0mS/cm以上の事例は無く，出芽後や苗立ち本数等において大きな差が認められないことから，実用上の大きな障害とはならないと判断するが，育苗上の注意点として，育苗期間中の灌水ムラ，特に置床周縁部の乾燥に注意し，適切な水分管理に努めるべきと考える。
表4 培土のpHおよびEC

<table>
<thead>
<tr>
<th>処理区</th>
<th>pH (H₂O)</th>
<th>EC (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照区</td>
<td>4.8</td>
<td>5.4</td>
</tr>
<tr>
<td>ML40区</td>
<td>4.3</td>
<td>5.3</td>
</tr>
<tr>
<td>ML50区</td>
<td>4.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>

2006年は移植時，2007年と2008年はシルバー被覆を剥いた際に調査

6. 本田移植後の生育について

本田移植後の生育に関しては、移植後2週間頃の茎葉乾物重および根乾物重が，ML50区＞ML40区＞対照区の順に多く，根近傍の養分濃度が高いことにより，活着及び生育が促進されたと思われる（図3）。その後の生育期節（出穂や成熟）に処理区分で明確な差はなかった。幼穂形成期の茎数の3ヶ月間

図3 本田移植後の茎葉部および根部乾物重（移植2週間後後）

図4 幼穂形成期の茎数および穂数

最終的な精玄米収量は対照区の3ヶ月間平均524kg/10aに対して，ML40区が109，ML50区が118と明らかに多く，穂数は対照区比で，ML40区が107，ML50区が108と増加した（図4）。
7. おわりに

以上の結果から、水稻育苗（成苗）における被覆肥料「マイクロリングトータル201-100」の
施用は、苗質の向上と、特に初期生育が不良な地
帯における本田移植後の初期生育促進の観点か
ら、有効である。施肥量については、本試験の範
囲内では差が判然としなかったため、40g/畝〜
50g/畝が適当と考える。

ただし、本試験のように播種同時施肥を行う
ためには、現行の成苗ボット播種機に施薬装置
（株）みのる産業製品）とオプション販売の施
薬ロールDの着付に若干の初期投資（価格は12〜
13万円程度）が必要となる。本方式のコストを勘
案して、導入の検討を願い
た。本肥料の場合、播種
同時施肥以外でも、事前に
培土と混和して用いること
も可能であり、この場合は
特殊な装置は必要ないが、
混和の手間が増える。ま
た、混和後の保管期間が長
い場合には保管中の肥料成
分溶出も予想されるので、

<table>
<thead>
<tr>
<th>調査項目</th>
<th>3ヶ年平均値</th>
<th>比（対照＝100）</th>
</tr>
</thead>
<tbody>
<tr>
<td>種数</td>
<td>本/m²</td>
<td>ML40区</td>
</tr>
<tr>
<td>自然数</td>
<td>×千粒/m²</td>
<td>647</td>
</tr>
<tr>
<td>供給数</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>千粒重</td>
<td>g</td>
<td>21.1</td>
</tr>
<tr>
<td>精玄米重</td>
<td>kg/10a</td>
<td>470</td>
</tr>
<tr>
<td>白米タンパク質</td>
<td>%</td>
<td>6.8</td>
</tr>
</tbody>
</table>

その場合には準備と使用期間等について検証が必
要であろう。

さらに、船足となるが「マイクロリングトータル201」には100日タイプの他に40日タイプ、70
日タイプが販売されている。育苗時の肥料供給の
観点からは、溶出期間の短いタイプが有効とも考
えうるが、筆者が過去に70日タイプを用いた場
合、出芽不良と肥料焼けによる葉先枯れが観察さ
れた。いくつかの予備試験と調査の結果、水稻育
苗用としては100日タイプが有効であり、溶出期
間の短いタイプを用いるべきではないことを付け加
えておく。